Section 2.1

Math 231

Hope College

Properties of Matrix Operations

Theorem 2.4: Throughout this result, matrices A, B, and C are assumed to be $m \times n$ matrices. The symbol $\mathbf{0}$ represents the $m \times n$ zero matrix.

- For all A, we have $0 \cdot A = \mathbf{0}$.
- 2 For all A, we have $1 \cdot A = A$.
- **3** For all $\alpha \in \mathbb{R}$, we have $\alpha \cdot \mathbf{0} = \mathbf{0}$.
- For all A and B, we have A + B = B + A (commutativity)
- For all A, B, and C, we have (A + B) + C = A + (B + C) (associativity)
- For all A and all $\alpha, \beta \in \mathbb{R}$, we have $(\alpha + \beta)A = \alpha A + \beta A$ (distributivity)
- For all A and B and all $\alpha \in \mathbb{R}$, we have $\alpha(A+B) = \alpha A + \alpha B$ (distributivity)
- **⑤** For all A and all $\alpha, \beta \in \mathbb{R}$, we have $(\alpha \beta)A = \alpha(\beta A)$.
- **9** For all A, we have $A + (-A) = (-A) + A = \mathbf{0}$.

Properties of Matrix Multiplication

Theorem 2.10: Throughout this result, matrices are assumed to be of sizes that can be multiplied or added together. Capital letters (*A*, *B*, and *C*) represent matrices. The symbol *I* represents an appropriate sized identity matrix.

- **1** For all A and all $k \ge 1$, we have $A \mathbf{0} = \mathbf{0}$ and $\mathbf{0}A = \mathbf{0}$.
- ② For all A, we have IA = A and AI = A.
- To rall A, B, and C, we have A(BC) = (AB)C. (associativity)
- For all A, B, and C, we have A(B+C)=AB+AC and (B+C)A=BA+CA. (distributivity)
- **⑤** For all *A* and *B* and all $\alpha \in \mathbb{R}$, we have $A(\alpha B) = \alpha(AB) = (\alpha A)B$.

